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LETTER TO THE EDITOR

Chaotic analytic zero points: exact statistics for those of a
random spin state

J H Hannay
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK

Received 25 October 1995

Abstract. A natural statistical ensemble of 2J points on the unit sphere can be associated, via
the Majorana representation, with a random quantum state of spinJ , and an exact expression
is obtained here for the generalk point correlation functionρk in this ensemble. The pair
correlationρ2 in the large-J limit takes the relatively simple form(J/2π)2g(

√
J/2θ) where

g(r) = [(sinh2 r2 + r4) coshr2 −2r2 sinhr2]/ sinh3 r2 andθ is the angular separation of the pair
of points on the sphere. It appears (from the numerical work of others) that, in this limit, these
statistics are typical of the zero points of analytic functions associated with chaotic quantum
dynamical systems.

A general state6am|J, m〉 of spinJ is described in the Majorana representation [1] (except
for its overall phase) by 2J points on the unit sphere. Their 2J unit vectorsri represent
(except for phase) the 2J spin-1

2 states|ri〉, whose symmetrized (and normalized) product
is 6am|J, m〉. This representation has the advantage of democracy: there is no longer any
priviliged axis inherent in the|J, m〉 representation. If the spin-J state is rotated in any way,
the sphere is rotated in the same way. The relationship between the coefficientsam and the
unit vectorsri is expressed through the stereographic projection from the south pole of the
sphere (defined as the negativem direction) onto its equatorial plane. If the stereographic
projections of the unit vectors are denoted by the 2J complex numbers(z1, z2, . . . , z2J ),
then these are the zeros of a polynomialf (z) whose coefficients aream multiplied by a
numerical factor:

f (z) = zJ
J∑

−J

(−1)m−J

√
(2J )!

(J + m)!(J − m)!
amzm (1)

= aJ (z − z1)(z − z2) · · · (z − z2J ) (2)

(the z subscripts are not related to thea subscripts). First discovered by Majorana [1]
in 1932, this representation has been rediscovered several times since then [2–4]. It has
recently been made known to a wider audience by Penrose [5, 6].

Zero points of analytic functions have found application [4, 7, 8] as a striking geometrical
characterization of the quantum wavefunction of a dynamical system. The analytic function
(the ‘Bargmann’ function) is generated by taking the inner product of the state of the system
with a coherent state centred atz. States of classically integrable systems tend to have zeros
lying along one-dimensional curves whereas classically chaotic systems have zeros scattered
about in two dimensions. For a spin system the analytic function is found [4] to be exactly
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the Majorana polynomial, and a typical spin state (i.e. a typical set of coefficientsa) has
a scatter of zero points looking much like that of a chaotic wavefunction of a dynamical
system. The question naturally arises ‘what are the statistics of the Majorana zeros for a
spin state picked at random?’ This is asked and answered here for its own sake, though
these statistics might then be hoped to have wider signficance, and it appears from work of
others mentioned at the end of this paper that this is so.

The ensemble of configurations of the 2J points on the unit sphere is to be generated
by a state of spinJ chosen uniformly randomly on the unit 4J + 1 sphere6|am|2 = 1
in Hilbert space. In fact, since the configuration does not depend on the state being well
normalized (only the ratios of theas matter), one can choose theas from any spherically
symmetric distribution in Hilbert space, conveniently a Gaussian with〈ama∗

n〉 = δmn, and
〈aman〉 = 0. A study of general random polynomials with various Gaussian distributions
of coefficients has been carried out by Bogomolny, Bohigas and Leboeuf (BBL1) [9]. In
particular, they report that the average density of zeros for equation (1) with this distribution
gives a uniform densityρ1 of zeros on the unit sphere. This is as one would hope with the
‘random-state’ interpretation just mentioned. (Their calculation is to appear (BBL2) [10].)

The joint probabilityρk(z1, z2, . . . , zk) d2z1 d2z2 . . . d2zk that k of the 2J points lie in
d2z1, d2z2, . . . , d2zk in the complex plane will be obtained. From that, the joint probability
ρk(r1, r2, . . . , rk) d2r1 d2r2 . . . d2rk of the points on the unit sphere follows merely by
multiplying by the stereographic Jacobian factor(1+z1z

∗
1)2 . . . (1+zkz

∗
k )

2/4k. Either of these
two correlation functionsρk, when integrated over its whole domain, yields 2J !/(2J − k)!.

The system is somewhat similar to the two-dimensional one-component plasma (at
1/kT = 2) for which exact statistics were obtained by Jancovici [11] by interpreting, in a
physical context, random matrix results of Ginibre [12]. The analogous results for a sphere
rather than a plane were obtained by Caillol [13]. The starting point for the plasma analysis
is the full joint probability distributionρ2J , or partition function, governed by the pairwise
Coulomb potential. For the present Majorana system, althoughρ2J can, and will in the
conclusion, be written down in the analogous form, it is more complicated (it does not
correspond to a purely pairwise interaction). Instead, followingBBL1, an approach based on
equations (1) and (2) and the statistics of theas is to be used, albeit differently implemented.

With fj ≡ f (zj ) and f ′
j ≡ df (zj )/dzj, the starting point is the joint probability

P(f1, . . . , fk, f
′
1, . . . , f

′
k) d2f1 . . . dfk d2f ′

1 . . . d2f ′
k . This is Gaussian since thef (z) is

linearly related to the coefficientsam, and is thus fully determined by its 2k×2k (Hermitian)
correlation matrixM made up of fourk × k submatrices:

P(f1, . . . , fk, f
′
1, . . . , f

′
k) = π−k detM−1 exp[−(f ∗

1 , . . . , f ∗
k , f ′∗

1 , . . . , f ′∗
k )M−1

×(f1, . . . , fk, f
′
1, . . . , f

′
k)] (3)

with

M =



〈f1f
∗
1 〉 〈f1f

∗
2 〉 · · · 〈f1f

′∗
1 〉 〈f1f

′∗
2 〉 · · ·

〈f2f
∗
1 〉 〈f2f

∗
2 〉 · · · 〈f2f

′∗
1 〉 〈f2f

′∗
2 〉 · · ·

...
...

. . .
...

...
. . .

〈f ′
1f

∗
1 〉 〈f ′

1f
∗
2 〉 · · · 〈f ′

1f
′∗
1 〉 〈f ′

1f
′∗
2 〉 · · ·

〈f ′
2f

∗
1 〉 〈f ′

2f
∗
2 〉 · · · 〈f ′

2f
′∗
1 〉 〈f ′

2f
′∗
2 〉 · · ·

...
...

. . .
...

...
. . .


≡

[
A B

B† C

]
. (4)

The k point correlation in a spin-J system, can now be calculated. The result (6) is valid
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for all k values, that is 16 k 6 2J (see the note following (6)):

ρk(z1, . . . , zk) = ∫ . . . ∫ P(0, . . . , 0, f ′
1, . . . , f

′
k)|f ′

1 . . . f ′
k|2 d2f1 . . . d2fk d2f ′

1 . . . d2f ′
k

= π−k detM−1∫ . . . ∫ exp[−(0, . . . , 0, f ′∗
1 , . . . , f ′∗

k )M−1

×(0, . . . , 0, f ′
1, . . . , f

′
k)]|f ′

1 . . . f ′
k|2 d2f1 . . . d2fk d2f ′

1 . . . d2f ′
k

= π−k detM−1(−1)k coeff of [µ1 . . . µkµ
∗
1 . . . µ∗

k ]

in ∫ . . . ∫ exp[−(0, . . . , 0, f ′∗
1 , . . . , f ′∗

k )M−1(0, . . . , 0, f ′
1, . . . , f

′
k)]

× exp[i(µ∗
1f

′
1 + · · · + µ∗

kf
′
k + µ1f

′∗
1 . . . µkf

′∗
k ) d2f1 . . . d2fk d2f ′

1 . . . d2f ′
k

= π−k detM−1 detN(−1)k coeff of [µ1 . . . µkµ
∗
1 . . . µ∗

k ]

in exp[−(µ∗
1, . . . , µ

∗
k)N(µ1, . . . , µk)]

= π−k detM−1 detN per N (5)

whereN ≡ C − B†A−1B is thek × k (Hermitian) matrix whose inverse is the lower right
submatrix of the inverse matrixM−1. The notation ‘perN ’ means the ‘permanent’ ofN
(per N ≡ 65NjPj whereas detN = 65(−1)P NjPj , where the product is over alli from
1 to k, and the sum is all overk! permutationsP , with signature denoted(−1)P ). The
final product can be simplified by Jacobi’s theorem [14], detM−1 detN = 1/ detA so that,
finally,

ρk(z1, . . . , zk) = π−k per [C − B†A−1B]/ detA . (6)

This is the result. It should be noted that for the highk values 2J + 1 < 2k 6 4J the
intermediate equations involve cancelling singularities because there are then more variables
f1, . . . , fk, f

′
1, . . . , f

′
k than coefficientsa−J , . . . , aJ generating them. Both detM and detN

are then zero, but only their ratio detA, which is well defined, appears in the result which
thus is valid for allk.

For the stated distribution of coefficientsa we have

〈fif
∗

j 〉 = 〈a−J a∗
−J 〉 + 〈a−J+1a

∗
−J+1〉(2J )(ziz

∗
j )1 + · · · 〈aJ a∗

J 〉(ziz
∗
j )2J = (1 + ziz

∗
j )2J (7)

〈fif
′ ∗

j 〉 = [∂/∂z∗
j ](1 + ziz

∗
j )2J = 2Jzi(1 + ziz

∗
j )2J−1 (8)

〈f ′
i f

∗
j 〉 = [∂/∂zi ](1 + ziz

∗
j )2J = 2Jz∗

j 1 + ziz
∗
j )2J−1 (9)

〈f ′
i f

′ ∗
j 〉 = [∂/∂zi∂/∂z∗

j ](1 + ziz
∗
j )2J = 2J (1 + 2Jziz

∗
j )(1 + ziz

∗
j )2J−2 . (10)

This completes the description of the generalk point correlation. The limit asJ → ∞ is
obtained in each equation by replacing the brackets(1 + •)2J by exp(2J•) and (in the last
three) differentiating it. The results are, respectively,

exp[2Jziz
∗
j ] 2Jzi exp[2Jziz

∗
j ] 2Jz∗

j exp[2Jziz
∗
j ] 2J (1 + 2Jziz

∗
j ) exp[2Jziz

∗
j ] .

The correlation functions thus shrink in width likeJ−1/2 asJ → ∞ as should be expected.
The one-point correlation or densityρ1(z) is 2J/π(1 + zz∗)2, giving ρ1(r) = 2J/4π ,

the uniform distribution (BBL1 [6], BBL2 [7]).
The pair correlationρ2 is also short enough to write out. It depends, of course, only on

the separation of the points on the sphere, so it suffices to pick any two points, say 0 and
z on the plane:

ρ2(0, z) = [(2J (a − 1) − b2)(d(a − 1) − c2) + (2J (a − 1) − bc)2]/π2(a − 1)3 (11)

wherea = (1+zz∗)2J , b = 2J |z|, c = 2J |z|(1+zz∗)2J−1, d = 2J (1+2Jzz∗)(1+zz∗)2J−2.
To convert this toρ2(r1, r2) for points of angular separationθ on the sphere one multiplies
ρ2(0, z) by the Jacobian factor( 1

4)(1 + zz∗)2/4 and substitutesz = tan(θ/2).
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Figure 1. The functiong(r) = [(sinh2 r2 + r4) coshr2 − 2r2 sinhr2]/ sinh3 r2. The J → ∞
limit of the pair correlation functionρ2 is (J/2π)2g(

√
J/2θ) whereθ is the angular separation

of the pair of points on the sphere.

The J → ∞ limit of ρ2(0, z) is (2J/π)2g(
√

2Jzz∗) where

g(r) = [(sinh2 r2 + r4) coshr2 − 2r2 sinhr2]/ sinh3 r2 (12)

which has the quadratic repulsiong(r) ∼ r2 near the origin, and a single small hump as
shown in the figure. On the sphere the Jacobian factor 1/42 gives the limit ofρ2(r1, r2) as
(J/2π)2g(

√
2J tan(θ/2)) which is equivalent, in the limitJ → ∞, to (J/2π)2g(

√
J/2θ),

because in this limit, unlessθ is small,g(r) → 1, with or without the tan.
In conclusion, mention should be made of a simple alternative formula forρ2J , that is,

the probability distribution for all the points, which is easily derived from the analysis in
BBL1 [9] (and indeed to appear inBBL2 [10]). The key relation is the ‘well known’ one
cited in BBL1 between the roots of a polynomial and its coefficients:

d2a−J . . . d2aJ =
2J∏
i=1

i−1∏
j=1

|zi − zj |2 d2z1 . . . d2z2J |aJ |4J d2aJ . (13)

Using this, together with the Gaussian probability distribution for theas (with zs substituted
for the as from (1) and (2)), one obtains

ρ2J (z1, z2, . . . , zk) = 2J !

π2J
2J∏

j=1
2J !/(2J − j)!j !

2J∏
i=1

i−1∏
j=1

|zi − zj |2{ ∑
Perms P

2J∏
i=1

(1 + ziz
∗
P i)

}2J+1 . (14)

This must be equivalent to the general formula (6) in the casek = 2J . The numerator is
essentially the 2D one-component plasma form ofρ2J mentioned earlier, and is responsible
for the quadratic form ofρ2 near the origin. The denominator evidently does not represent
a pairwise interaction.
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It is interesting to convert theρ2J of (14) to the sphere geometry. The necessary relation
is 〈ri |rj 〉 = (1 + ziz

∗
j )/

√
1 + ziz

∗
i

√
1 + zj z

∗
j (having taken an immaterial, but convenient

choice of phase zeros for the states). This is to be used on the product of (14) and the
stereographic Jacobian factor(1 + z1z

∗
1)2 . . . (1 + z2J z∗

2J )2/42J . If this factor is denoted
q2 and written asq−(2J−1)/q−(2J+1), then multiplying (14) by this ratio, the numerators
combine, and the denominators combine to give

ρ2J (r1, r2, . . . , rk) = 2J !

(4π)2J
2J∏

j=1
2J !/(2J − j)!j !

2J∏
i=1

i−1∏
j=1

(
1 − |〈ri |rj 〉|2

)
{ ∑

PermsP

2J∏
i=1

〈ri |rP i〉
}2J+1 . (15)

This can be interpreted in words as follows. The quantity|〈ri |rj 〉|2 equals(1+ri ·rj )/2, so
that the numerator is the product, over all distinct pairs, of terms(1− ri · rj )/2. This term
is the square of half the chord length between pointsi andj . The braces in the denominator
contain the sum over all permutationsP of the product of terms like〈ri |rj 〉〈rjrk〉 . . . 〈rl|ri〉,
one from each cycle inP . This term has a magnitude equal to the product of all the radii
of the chord midpoints, and a phase equal to half the (signed) area, or solid angle, of the
spherical polygon of geodesics formed by the cycle of points on the sphere.

Finally, as indicated earlier, the statistics obtained above appear to apply beyond the
static, but random, spin system considered here. Leboeuf and Shukla [15] have, I learn,
examined the pair correlationρ2 numerically, and compared the results with the correlation
of complex zeros of the analytic functions (‘Bargmann’ functions) associated with the
wavefunctions of chaotic dynamical systems. The systems they studied are the kicked top
and the standard map on the torus, and another system examined by Prosen [8] yields similar
results (personal communication). The agreement obtained lends support to the universality
that they suggest applies to the statistics of zeros of ‘chaotic’ analytic functions. Systems
with time reversal symmetry would require a modified analysis and this has now been
supplied by Prosen [16].
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